VARIABLE MEMORIES \& SOLVING EQUATIONS USING A CASIO SCIENTIFIC CALCULATOR

Astrid Scheiber

James Ralph / CASIO
Adequate knowledge of calculator skills makes the teaching of Financial Maths \& Functions easier and enables the educator to assist their learners more efficiently.

Content: This workshop will cover: In-putting values into the CASIO calculator MEMORY, using the saved values \& recalling what has been saved. Using TABLE MODE - solving Simultaneous, Quadratic \& Cubic equations.

Worksheet:

\section*{VARIABLE MEMORIES

To assign the result of $3+5$ to variable A	
To multiply the contents of variable A by 10	(11PHA $(-) \times 100$
To recall the contents of variable A	(1C) $(-)$

On the calculator, financial maths calculations are done as a continuous calculation.
If you use the memory keys, you do not have to key in the same numbers repeatedly.
Which helps save time and prevent confusion.

Example 1

What would an investment of R500 be worth in 6 years' time, if for the first 3 years it earns $12,3 \%$ p.a. compounded monthly and for the last 3 years it earns $13,5 \%$ p.a. compounded half-yearly?

$$
\begin{aligned}
& A=P(1+i)^{n} \\
& A=500\left(1+\frac{0.123}{12}\right)^{3 \times 12}\left(1+\frac{0.135}{2}\right)^{3 \times 2}
\end{aligned}
$$

STORE: $\left(1+\frac{0.123}{12}\right)$ INTO VARIABLE A

SHIFT RCL $(-)$

SHFT $R C L$

And then complete the calculation

2

$500 \mathrm{~A}^{3 \times 12^{8}} \mathrm{~B}^{5 \times 2}$
1068.110624

Example 2

A man borrows R5 000 and agrees to repay the amount as follows: R2 000 after 2 years, R3 000 after 3 years and the balance at the end of 7 years. How much must he pay if interest is at $12,5 \%$ p.a. compounded quarterly for the first three years and $13,25 \%$ p.a. compounded monthly thereafter?

$$
\begin{aligned}
& A=P(1+i)^{n} \\
& 0=5000(1\left.+\frac{0.125}{4}\right)^{3 \times 4}\left(1+\frac{0.1325}{12}\right)^{4 \times 12} \\
&-2000\left(1+\frac{0.125}{4}\right)^{1 \times 4}\left(1+\frac{0.1325}{12}\right)^{4 \times 12} \\
&-3000\left(1+\frac{0.1325}{12}\right)^{4 \times 12}-X
\end{aligned}
$$

SHIFT RCL $(-)$

STORE: $\left(1+\frac{0.1325}{12}\right)$ INTO VARIABLE B $\quad \begin{array}{r}\left(1+\frac{.1325}{1 Z}\right)^{\circ}+\mathrm{B} \\ \\ \frac{4855}{4800}\end{array}$
SHIFT RCL $O 9$

And then complete the calculation

 - 10 回

$5000 \mathrm{~A}^{3 \times 4} \mathrm{~B}^{4 \times 12_{-i}^{\text {max }} \mathrm{t}}$ 3339.480985

- The Memory Keys save time - less calculator keys are pressed.
- The Memory Keys do not have to be cleared to be used again. When saving a new value, it overwrites the existing value.

MODE 3: Table

Find the points of intersection of the straight line $\mathrm{f}(x)=x-3$ and the parabola $\mathrm{g}(x)=x^{2}-x-6$ when $x \varepsilon[-3 ; 4]$

* ZOOM IN * and find the turning point of $g(x)$

SOLVING EQUATIONS

1. Simultaneous equations with 2 unknowns

Solve for \boldsymbol{x} and \boldsymbol{y} :

$$
\begin{aligned}
& 3 x+2 y=-8 \\
& 5 x-4 y=-6
\end{aligned}
$$

Manipulate

$$
\begin{gathered}
y=\frac{-3 x-8}{2} \\
y=\frac{5 x+6}{4}
\end{gathered}
$$

Key Sequence: \quad On screen:

- Input $\mathrm{f}(x)$ formula Ξ
- Input $\mathrm{g}(x)$ formula $\boldsymbol{\Xi}$
- Set boundaries for the table: Start? -9 (End? 9 Step? 1 O

$$
x=-2 \text { and } y=-1
$$

$D O N^{\prime} T F O R G E T$
$\boldsymbol{f}(\boldsymbol{x}) \& \boldsymbol{g}(\boldsymbol{x})-20 \boldsymbol{x}$ values
$\boldsymbol{f}(\boldsymbol{x})-\mathbf{3 0} \boldsymbol{x}$ values

HOW TO CHANGE:

	4	

Now try: $\left(\frac{1}{4}\right)^{x}=\log _{\frac{1}{4}} x$
Start: $0 \quad$ End: $9 \quad$ Steps: 0,5

2. Quadratic equation

Generate a TABLE for the equation \& read off the x value where $\mathrm{f}(x)=0$

$$
x^{2}-5 x+6=0
$$

Key Sequence:

- Input $\mathrm{f}(x)$ equation $\boldsymbol{\Xi}$ to input the variable x :
ALPHA \square
- $g(x)=\boldsymbol{Z}$
- Set boundaries for your table: Start? $\boldsymbol{\square}$ 国
End? 6 日
Step? 1 O
$f(x)=0$ at $x=2$ or $x=3$

DOMAIN: Negative $\boldsymbol{\&}$ positive values of the constant
$S T E P S$: Reciprocal of the co-efficient of the highest power of x

Now try: $3 x^{2}-5 x=2$

3. Cubic equation

Generate a TABLE for the equation \& read off the x value where $\mathrm{f}(x)=0$

$$
2 x^{3}+3 x^{2}-11 x-6=0
$$

Key Sequence：
－Input $\mathrm{f}(x)$ equation $\boldsymbol{\Xi}$
－$g(x)=\boldsymbol{Z}$
－Set boundaries for your table：
Start？\square 回
End？ 6 回
Ster？ 1 回
－Turn $g(x)$ off
© SHIFT MODE $\odot 4,1$

$$
f(x)=0 a t
$$

$x=-3$ or $x=-\frac{1}{2}$ or $x=2$

On screen：

$$
f(X)=4 x^{2}-11 X-6
$$

Insufficient．Math
［AC］：Cヨクロー1
［1］［4］：GOto

$$
z
$$

Now try：$x^{3}-\frac{3}{2} x^{2}-4 x+6=0$

LIKE US ON

> VISIT OUR
> WEBSITE
> FOR
> RESOURCES

CASIO
CALCULATORS
SOUTH AFRICA

