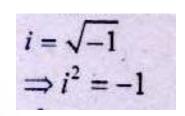
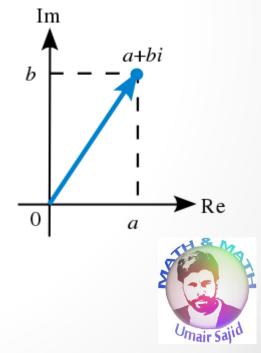


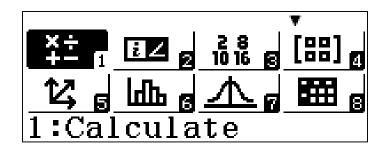
Video by Umair Sajid Phone number XXXXXXX Youtube channel math and math

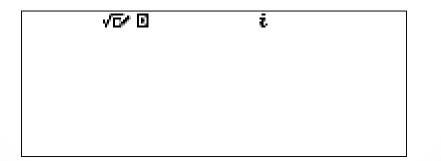
Complex number

 A complex number is a quantity of the form x + iy, where x and y are real numbers, and "i" represents the unit imaginary numbers equal to the positive square root of -1.

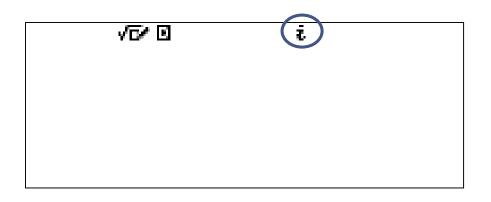




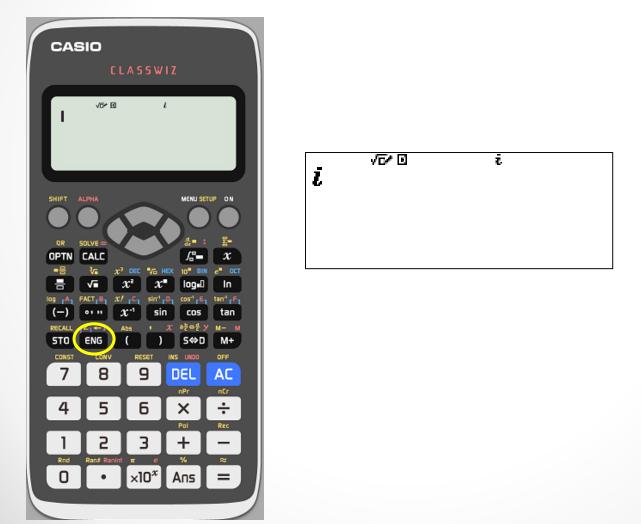




your calculator screen look like this



For i symbol press ENG



Addition of complex numbers

• Q	(7,9)+(3,-5) = (7+9i)+(3-5i)	
	= 7+3 +(9-5)i =10+4i	
	(7+9i) + (3-5i)	
	10+4 <i>i</i>	S Contraction

(7 + 9 ENG) + (3 - 5 ENG) =

Subtraction of complex numbers

Q

(8,-5)+(-7,4)

- = (8-5i)- (-7+4i)
 - = 8-5i+7-4i
 - = 8+7-5i-4i

= 15-9i

$$(8-5\vec{i}) - (-7+4i)^{i}$$

15-9*i*

Multiplication of complex numbers

Q (5,-4)(-3,-2)= (5-4i)(-3-2i)= $-15-10i + 12i + 8i^2$ = -15+2i - 8= -23 + 2i

$$(5-4i)^{(i)}(-3-2i)^{(i)}$$

(5 - 4 ENG) (- 3 - 2 ENG) =

-23+2*i*

Division of complex numbers

if you found *i* in denominator then just multiply and divide whole sequence by conjugate of denominator as shown below

11	: (2, 6) ÷ (3, 7)		
$\frac{2}{2}$	$\frac{+6i}{+7i} = \frac{2+6i}{3+7i} \times \frac{3-7i}{3-7i}$		
3			
	$=\frac{(2+6i)(3-7i)}{(3)^2-(7i)^2}$		
	6 + 4i - 42(-1)	$\frac{2+6i}{3+7i}^{10}$	ž 🔺
Ì	=	3+71	$\frac{24}{29} + \frac{2}{29}i$
	$=\frac{24}{29}+i\frac{2}{29}$		20 20

Multiplicative inverse 'I' (1) $(\sqrt{2}, -\sqrt{5})$

Multiplicative Inverse = $\frac{1}{(\sqrt{2}, -\sqrt{5})}$ = $\frac{1}{\sqrt{2} - \sqrt{5}i} \times \frac{\sqrt{2} + i\sqrt{5}}{\sqrt{2} + i\sqrt{5}} = \frac{\sqrt{2}}{7} + \frac{\sqrt{5}}{7}i$

$$\frac{1}{\sqrt{2} - \sqrt{5} i} \qquad \frac{i}{\sqrt{2} + \sqrt{5}} i \qquad \frac{\sqrt{2}}{7} + \frac{\sqrt{5}}{7} i$$

Separate real and imaginary part

16. Separate into real and imagina	ary parts (write as a simple com	plex number):
(ii) $\frac{(-2+3i)^2}{1+i}$	$\frac{(-2+3i)^2}{1+i}$	
$\frac{(-2+3i)^2}{1+i} = \frac{4-12i+9i^2}{1+i} \times \frac{1-i}{1-i}$ $= \frac{(4-12i+9(-1))(1-i)}{(1+i)(1-i)}$	$-\frac{17}{2}$	
$=\frac{(4-12i-9)(1-i)}{(1)^2-(i)^2}=\frac{(-5-12i)(1-i)}{1-(-1)}$	$=\frac{-5+5i-12i+12i^2}{1+1}$	$=\frac{-5-7i+12(-1)}{2}$
$=\frac{-17-7i}{2}=\frac{-17}{2}-\frac{7}{2}i$		

Polar form (r, θ)

Example 4: Express the complex number $1 + i\sqrt{3}$ in polar form.

Solution:

Put
$$r \cos \theta = 1 \rightarrow (i) \& r \sin \theta = \sqrt{3} \rightarrow (ii)$$

Squaring & adding (i) & (ii)
 $r^2 \cos^2 \theta + r^2 \sin^2 \theta = (1)^2 + (\sqrt{3})^2$
 $r^2 (\cos^2 \theta + \sin^2 \theta) = 1 + 3$
 $r^2 = 4$

 $(1+i\sqrt[]{3}) \cdot r \angle \theta$

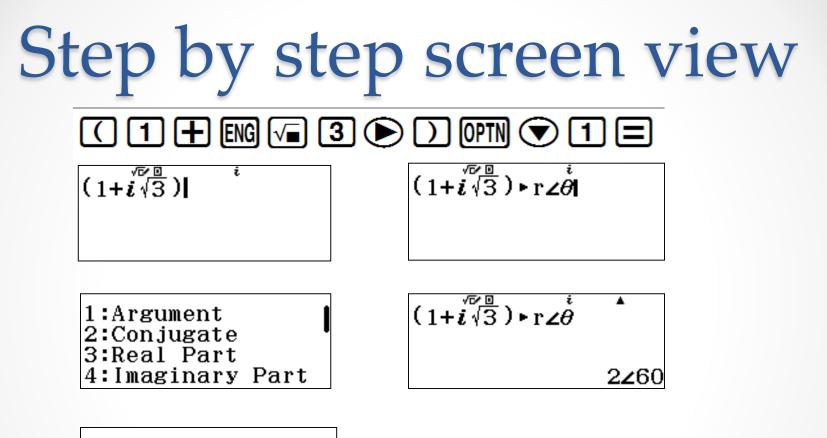
Dividing (ii) by (i)

$$\frac{r\sin\theta}{r\cos\theta} = \frac{\sqrt{3}}{1}$$
$$\tan\theta = \sqrt{3}$$
$$\theta = Tan^{-1}(\sqrt{3})$$
$$\theta = 60^{\circ}$$

r=2

Thus $1 + i\sqrt{3} = r(\cos\theta + i\sin\theta)$ = $2(\cos60^{\circ} + i\sin60)$

1.15



1:►r∠θ 2:►a+b*i*

Demoiver's theorm

• Statement; $(Cos\theta + isin\theta)^n = Cos(n\theta) + isin(n\theta)$

Example 5: Find out real and imaginary parts of each of the following complex numbers. (i) $(\sqrt{3} + i)^3$ Federal 2009

Solution

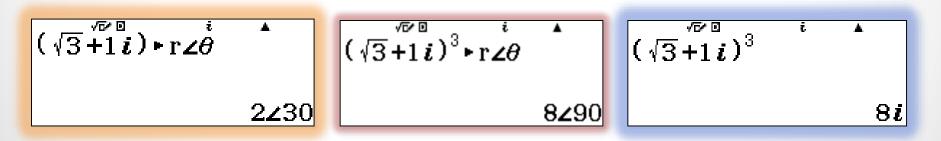
Let
$$r\cos\theta = \sqrt{3}$$
, & $r\sin\theta = 1$ where
 $r^2\cos^2\theta + r^2\sin^2\theta = (\sqrt{3})^2 + (1)^2$
 $r^2(\cos^2\theta + \sin^2\theta) = 3 + 1$

also
$$\frac{r\sin\theta}{r\cos\theta} = \frac{1}{\sqrt{3}}$$

 $\tan\theta = \frac{1}{\sqrt{3}}$
 $\theta = \tan^{-1}(\frac{1}{\sqrt{3}})$
 $\theta = 30^{\circ}$

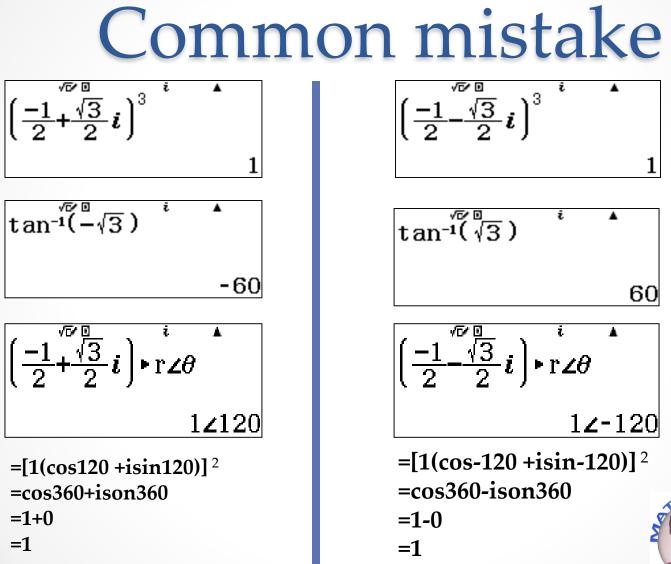
 $(\sqrt{3}+1)^3 = [r(\cos\theta + i\sin\theta)]^3 = r^3(\cos\theta + i\sin\theta)^3$ $= 2^3(\cos\theta + i\sin\theta)^3 = 8(\cos 3(30^0) + i\sin 3(30^0) \text{ By demoiver's theorem.}$

$$(\sqrt{3} + 1)^{3} = 8[\cos 90^{\circ} + i \sin 90^{\circ}]$$
$$= 8[0 + i \cdot 1] = 0 + 8i$$
$$(\sqrt{3} + 1)^{3} = 8i$$



Exercise problem

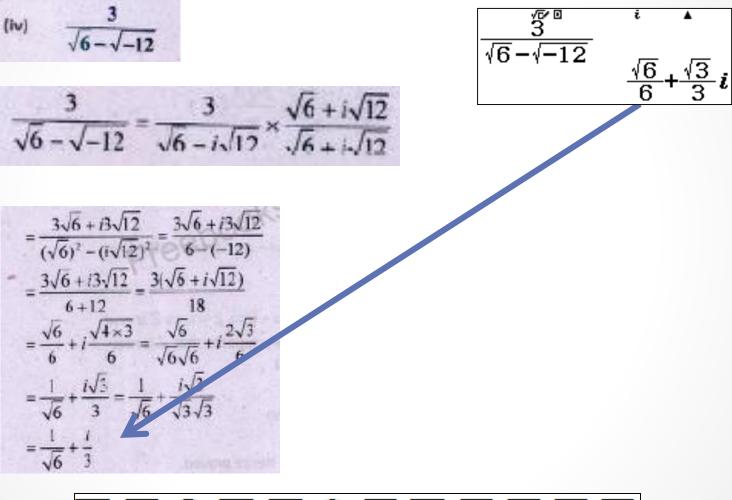
Simplify by ex i) $5+2\sqrt{-4}$ iv) $\sqrt{6} - \sqrt{-12}$ iii) $\frac{2}{\sqrt{5}+\sqrt{-8}}$ ii) $(z-\bar{z})^2$ is a real nu Show that $\forall z \in C$ 6. i) $z^2 + \overline{z}^2$ is a real number. Simplify the following (ii) $\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)$ (i) $\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)^3$ iii) $\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^{2} \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)$ iv) $(a+bi)^2$ vi) $(a+bi)^3$ v) $(a+bi)^{-2}$ (viii) $(3 - \sqrt{-4})^{3}$ vii) $(a-bi)^3$



How to graph numbers on complex plane

(i) $2+3i$ Sol. $2+3i$ Compare with $x+iy$ Here $x = 2, y = -3$	(-2+3i)
(ii) $2-3i$ Sol. $2-3i$ Compare with $x + iy$ X' x = 2, $y = -3$	x
(iii) $-2-3i$ Sol. Compare with $x + iy$ x = -2, $y = -3$	(-2-3i) (2-3i)
(iv) $-2+3i$ Sol. $-2+3i$ Compare with $x + iy$ x = -2, $y = 3$	Ψ _{Y'}

3. Simplify by expressing in the form a + bi



 $iii_{1}\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)^{3} \leftarrow$ $\left(\frac{-1}{2}-\frac{\sqrt{3}}{2}i\right)^3$ $= \left(-\frac{1}{2} - \frac{13}{2}i\right)^{2} \left(-\frac{1}{2} - \frac{13}{2}i\right)^{2}$ $\left(\frac{-1}{2} - \frac{\sqrt{3}}{2}i\right)^2$ $=\left(\left(-\frac{1}{2}\right)^{2}+\left(\frac{3}{2}i\right)^{2}-2\left(-\frac{1}{2}\right)\left(\frac{3}{2}i\right)\left(-\frac{1}{2}-\frac{13}{2}i\right)$ $=\left(\frac{1}{4}-\frac{3}{4}+\frac{13}{2}i\right)\left(-\frac{1}{2}-\frac{13}{2}i\right)$ $=\left(-\frac{1}{2}+\frac{\overline{3}i}{2}\right)\left(-\frac{1}{2}-\frac{\overline{3}i}{2}\right)$ $\left[\frac{-1}{2}-\frac{\sqrt{5}}{2}i\right]^{i}$ $-\frac{1}{2}+\frac{\sqrt{3}}{2}i$ $= \left(-\frac{1}{2}\right)^2 - \left(\frac{13}{2}i\right)^2$ $= \frac{1}{4} - \frac{3}{4}i^2 = \frac{1}{4} + \frac{3}{4} = \frac{1+3}{4} = \frac{4}{4} = \frac{1}{4}i^2$ $\left(\frac{-1}{2}+\frac{\sqrt{3}}{2}i\right)\left(\frac{-1}{2}-\frac{\sqrt{3}}{2}i\right)$

